General Description

The LTR33 series devices are low temperature drift (20 ppm/°C maximum), low-power, high-precision CMOS voltage reference, featuring $\pm 0.15\%$ initial accuracy, low operating current with power consumption less than 500 μ A. This device also offers very low output noise of 12 μ V_{pp}/V, which enables its ability to maintain high signal integrity with high-resolution data converters in noise critical systems.

Packaged in the same SOT-23-3 package, LTR33xx offers enhanced specifications and pin-to-pin replacement for REF33xx and LM4132. Stability and system reliability are further improved by the low output-voltage hysteresis of the device and low long-term output voltage drift. LTR33xx is specified for the wide temperature range of -40 to +85 °C.

Features and Benefits

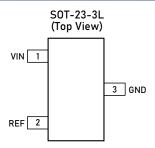
Voltage options: 1.25V, 2.048V, 2.5V, 3.0V, 3.3V, 4.096V

■ Initial accuracy: ±0.15% (maximum)

■ Low temperature coefficient: 20 ppm/°C (maximum)

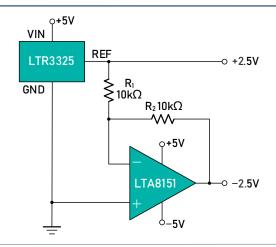
Output 1/f noise at 0.1 to 10 Hz: 12 μV_{PP}/V

■ Excellent line regulation: 100 ppm/V


Supply voltage: 2.7 to 5.5 V

Power consumption: < 500 μA</p>

■ Startup time: < 2ms


■ Operating temperature: -40 to 85 °C

Pin Configuration

Applications

- Data acquisition (DAQ)
- PLC analog I/O modules
- Field transmitters
- Motor drive control module
- Battery test equipment
- LCR meters

Pin Description

Pin. Name	Pin Description
VIN	Power supply voltage
GND	Ground.
REF	Reference voltage outputs , an external capacitor is required.

Ordering Information (1)

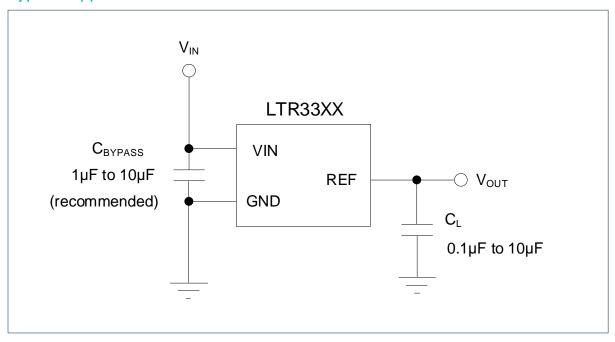
Type Number	Output Voltage	Temperature Coefficient	Operating Temperature	Package Name	
LTR3312T20YT3	1.25V	20ppm/°C	−40 to 85 °C	S0T-23-3	
LTR3320T20YT3	2.048V	20ppm/°C	−40 to 85 °C	S0T-23-3	
LTR3325T20YT3	2.5V	20ppm/°C	−40 to 85 °C	S0T-23-3	
LTR3330T20YT3	3.0V	20ppm/°C	−40 to 85 °C	S0T-23-3	
LTR3333T20YT3	3.3V	20ppm/°C	−40 to 85 °C	S0T-23-3	

⁽¹⁾ Please contact to your Linearin representative for the latest availability information and product details.

Limiting Value - In accordance with the Absolute Maximum Rating System (IEC 60134).

Operating Ambient Temperature Range	−40 to 85 °C
Storage Temperature Range	−50 to 125 °C
Input Voltage Range	-0.3 V to 5.5 V
ESD protection	> 2000 V

Note: Stresses exceeding those listed in the Maximum Rating stable may damage the device. Operation beyond the maximum Rating conditions or under harsh conditions may affect product reliability and function.



Electrical Characteristics

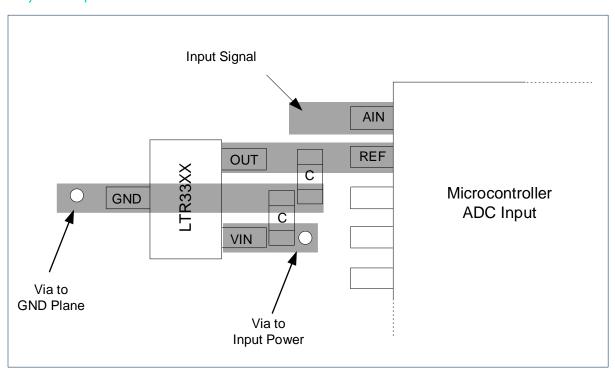
Symbol	Parameter	Description	Min.	Тур.	Max.	Unit
V _{IN}	Power supply voltage		2.7	5	5.5	V
I _{CC}	Power consumption	V _{CC} = 5.0V, no load.		300	500	μА
		LTR3312		1.25		V
$V_{ ext{out}}$		LTR3320		2.048		V
		LTR3325		2.5		V
	Output voltage	LTR3330		3.0		V
		LTR3333		3.3		V
		LTR3340		4.096		V
ΔV_{OUT}	Output voltage accuracy		-0.15		0.15	%
T _c	Temperature coefficient				20	ppm/°C
V _{IN} -V _{OUT}	Dropout Voltage			200		mV
$\Delta V_{OUT} / \Delta V_{IN}$	Line Regulation				100	ppm/V
$\Delta V_{OUT} / \Delta I_{L}$	Load Regulation				50	ppm/mA

Note: Low current coefficient version is available by Q2/2022.

Typical Application

Layout

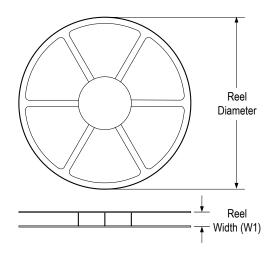
Layout Guidelines

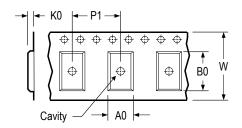

For optimal performance of this design, please follow standard printed circuit board (PCB) layout guidelines, including proper decoupling close to all integrated circuits and adequate power and ground connections with large copper pours.

As shown below an example of a PCB layout for a data acquisition system using the LTR33xx.

Some key considerations are:

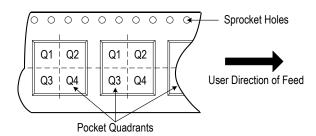
- Connect a low-ESR, 1µF ceramic capacitor at the IN pin for bypass, and a 0.1uF to 10uF ceramic capacitor at the OUT pin for stability of the LTR33xx.
- Decouple other active devices in the system per the device specifications.
- Use a solid ground plane helps distribute heat and reduces EMI noise pickup.
- Place the external components as close to the device as possible. This configuration prevents parasitic errors (such as the Seebeck effect) from occurring.
- Minimize trace length between the reference and bias connections to the ADC to reduce noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when absolutely necessary.


Layout Example



Tape and Reel Information

REEL DIMENSIONS

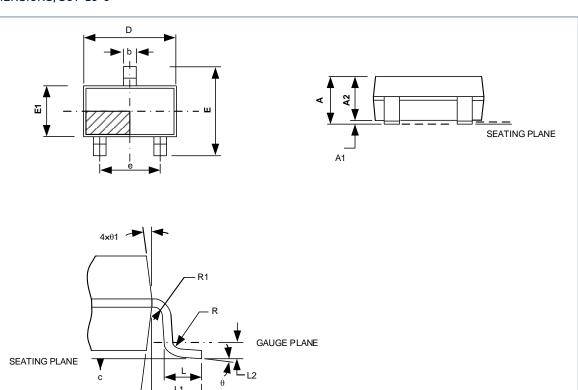


TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIETATION IN TAPE

Low-Drift, Low-Power, Small-Footprint Series Voltage Reference


* All dimensions are nominal

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
LTR3312T20YT3	S0T23	3	3 000	178	9.0	3.3	3.2	1.5	4.0	8.0	Q3

Package Outlines

DIMENSIONS, SOT-23-3

Symbol	Min.	Тур.	Max.			
Α	_	_	1.35			
A1	0	_	0.15			
A2	1.0	1.1	1.2			
b	0.35	_	0.45			
b1	0.32	_	0.38			
С	0.14	_	0.20			
C1	0.14	0.15	0.16			
D	2.82	2.92	3.02			
Е	2.60	2.80	3.00			
E1	1.526	1.626	1.726			
е	1.8	1.9	2.0			
L	0.35	0.45	0.6			
L1	0.6REF					
L2	0.25REF					
R	0.1	_	-			
R1	0.1	_	0.25			
θ	0° 4°		8°			
0 1	5°	10°	15°			

(Unit: mm)

