General Description

The LTA809x family (LTA8091, LTA8092, and LTA8094) is a new generation of high voltage (48 V), low noise, precision operational amplifiers. These devices offer outstanding dc precision and ac performance, including low offset ($\pm 25~\mu V$ typically), low offset drift ($\pm 1~\mu V/^{\circ}C$ typically), 22-MHz bandwidth, and 4 nV/ \sqrt{Hz} Input voltage noise density at 10 kHz. Unique features such as differential input-voltage range to the negative supply rail, high output current ($\pm 45~mA$), high capacitive load drive of up to 1 nF, and high slew rate (20 V/ μ s) make the LTA809x high-performance operational amplifiers for high-voltage industrial applications.

The robust design of the LTA809x family provides ease-of-use to the circuit designer: integrated RF/EMI rejection filter, no phase reversal in overdrive conditions, and high electro-static discharge (ESD) protection. The LTA809x are optimized for operation at voltages from +4 V (± 2 V) to +48 V (± 2 V) over the extended temperature range of -40 °C to +125 °C.

The LTA8091 (single) is available in both SOT23-5L and SOIC-8L packages. The LTA8092 (dual) is offered in SOIC-8L and MSOP-8L packages. The quad-channel LTA8094 is offered in both SOIC-14L and TSSOP-14L packages.

Features and Benefits

■ Wide Supply: ±2 V to ±24 V, 4 V to 48 V

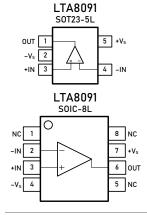
■ Wide Bandwidth: 22 MHz GBW

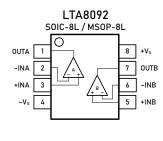
High Slew Rate: 20 V/μs

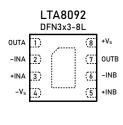
Low Noise: 4 nV/√Hz at 10 kHz

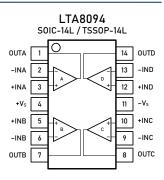
Low Offset Voltage: ±25 μV

Low Offset Voltage Drift: ±1 μV/°C


■ High Common-Mode Rejection: 120 dB


Low Bias Current: ±5 pA
EMI/RFI Filtered Inputs


Applications


- High-Side and Low-Side Current Sensing
- Audio Preamplifier
- High Precision Comparator
- Multiplexed Data-Acquisition Systems
- High-Resolution ADC Driver Amplifiers
- SAR ADC Reference Buffers
- Test and Measurement Equipment
- Programmable Logic Controllers

Pin Configuration (Top View)

Pin Description

Symbol	Description
-IN	Inverting input of the amplifier. The voltage range is from V_{S-} to V_{S+} – 2V.
+IN	Non-inverting input of the amplifier. This pin has the same voltage range as -IN.
+V _S	Positive power supply. The voltage is from 4V to 48V. Split supplies are possible as long as the voltage between $\rm V_{S+}$ and $\rm V_{S-}$ is from 4V to 48V.
-V _S	Negative power supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between V_{S+} and V_{S-} is from 4V to 48V.
OUT	Amplifier output.

Ordering Information (1)

Type Number	Package Name	Package Quantity	Eco Class ⁽²⁾	Marking Code ⁽³⁾
LTA8091XT5/R6	S0T23-5L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	H91
LTA8091XS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	HV-91
LTA8092XS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	HV-92
LTA8092XV8/R6	MSOP-8L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	HV92
LTA8092XF8/R6	DFN3x3-8L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	HV92
LTA8094XS14/R5	SOIC-14L	Tape and Reel, 2 500	Green (RoHS & no Sb/Br)	HV-94
LTA8094XT14/R6	TSS0P-14L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	HV-94

- (1) Please contact to your Linearin representative for the latest availability information and product content details.
- (2) Eco Class The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & Halogen Free).
- (3) There may be multiple device markings, a varied marking character of "x", or additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

Limiting Value - In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Absolute Maximum Rating
Supply Voltage, V_{S+} to V_{S-}	60 V
Signal Input Terminals: Voltage, Current	$-V_S - 0.3 \text{ V to } +V_S + 0.3 \text{ V, } \pm 10 \text{ mA}$
Output Short-Circuit	Continuous
Storage Temperature Range, T _{stg}	-65 °C to +150 °C
Junction Temperature, T _J	150 °C
Lead Temperature Range (Soldering 10 sec)	260 °C

ESD Rating

Parameter	Item	Value	Unit
	Human body model (HBM), per MIL-STD-883J / Method 3015.9 (1)	±1 000	
Electrostatic Discharge Voltage	Charged device model (CDM), per ESDA/JEDEC JS-002-2014 (2)	±1 000	V
	Machine model (MM), per JESD22-A115C	±400	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken.

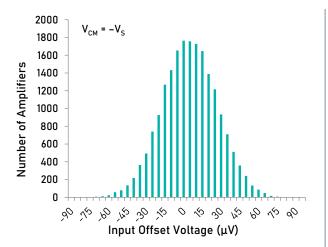
⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible if necessary precautions are taken.

Electrical Characteristics

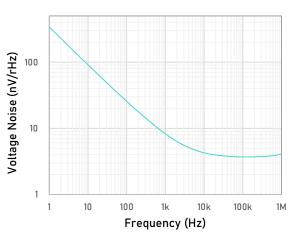
 V_S = 4.5 V to 48 V, T_A = +25 °C, V_{CM} = V_S /2, V_0 = V_S /2, and R_L = 10 k Ω connected to V_S /2, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 °C to +125 °C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
OFFSET V	OLTAGE		•				
V _{os}	Input offset voltage			±25	±100	μ۷	
V _{os} TC	Offset voltage drift	$T_A = -40 \text{ to } +125 ^{\circ}\text{C}$		±1		μV/°C	
PSRR	Power supply rejection	V_S = 4.5 to 48 V, V_{CM} = 0.1 V		1		- μV/V	
FJKK	ratio	$T_A = -40 \text{ to } +125 ^{\circ}\text{C}$		5		μν/ν	
INPUT BIA	AS CURRENT						
				5			
I _B	Input bias current	T _A = +85 °C		150		pΑ	
		T _A = +125 °C		500		=	
I _{os}	Input offset current			1		pΑ	
NOISE							
V _n	Input voltage noise	f = 0.1 to 10 Hz		3.6		μV _{P-P}	
	Input voltage noise	f = 1 kHz		8		V/ /11	
e _n	density	f = 10 kHz 4		4		— nV/√Hz	
I _n	Input current noise density	f = 1 kHz		5		fA/√H	
INPUT VO	LTAGE						
V _{CM}	Common-mode voltage range		-V _s		+V _S -2	٧	
01400	Common-mode rejection ratio	V _S = 40 V, V _{CM} = 0 to 38 V		120			
		V_{CM} = 0.1 to 38 V, T_A = -40 to +125 °C		106		– dB	
CMRR		V _S = 5.0 V, V _{CM} = 0 to 3 V		85			
		V _{CM} = 0.1 to 3 V, T _A = -40 to +125 °C		72		_	
INPUT IM	PEDANCE						
0	I	Differential		2.0			
C _{IN}	Input capacitance	Common mode		3.5		- pF	
OPEN-LO	OP GAIN						
		V _S = 40 V, V ₀ = 0.1 to 39.9 V		120			
	On an I an walkana main	T _A = -40 to +125 °C		116		- -	
A _{VOL}	Open-loop voltage gain	V _S = 5 V, V ₀ = 0.1 to 4.9 V		105		- dB	
		T _A = -40 to +125 °C		101		_	
FREQUEN	ICY RESPONSE						
GBW	Gain bandwidth product			22		MHz	
SR	Slew rate	V _S = 40 V, G = +1, 10 V step		20		V/µs	
THD+N	Total harmonic distortion + noise	G = +1, f = 1 kHz, V ₀ = 3 V _{RMS}		0.0001		%	
	6	To 0.1%, V _S = 40 V, G = +1, 5 V step		0.9			
t _s	Settling time	To 0.01%, V _S = 40 V, G = +1, 5 V step		2		μs	
t _{or}	Overload recovery time	V _{IN} × Gain > V _S		0.3		μs	

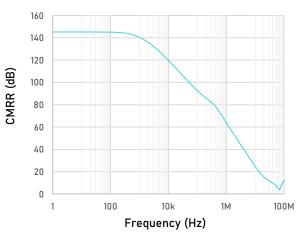
Electrical Characteristics (continued)

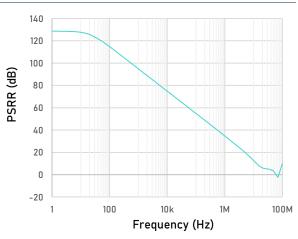

 V_S = 4 V to 48 V, T_A = +25 °C, V_{CM} = V_S /2, V_0 = V_S /2, and R_L = 10 k Ω connected to V_S /2, unless otherwise noted. Boldface limits apply over the specified temperature range, T_A = -40 °C to +125 °C.

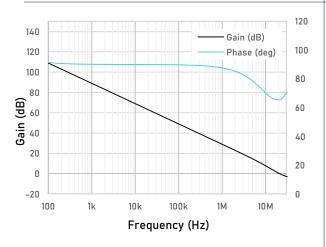
	,	1 3 7 A					
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
OUTPUT			<u>'</u>			•	
, High output voltage		V_S = ± 20 V, R_L = 10 k Ω		+V _S -97		\/	
V _{OH}	swing	$V_S = \pm 20 \text{ V, } R_L = 2 \text{ k}\Omega$		+V _S -257		– mV	
V	Low output voltage	V_S = ± 20 V, R_L = 10 k Ω		-V _S +52			
V	swing	$V_S = \pm 20 \text{ V, } R_L = 2 \text{ k}\Omega$		-V _S +232		– mV	
I _{sc}	Short-circuit current			±55		mA	
POWER S	UPPLY						
V _S	Operating supply voltage	T _A = -40 to +125 °C	4		48	٧	
. Quiescent current		V _S = 5 V		4.4		4	
IQ	(per amplifier)	V _S = 40 V	8.2		— mA		
THERMAL	. CHARACTERISTICS						
T _A	Operating temperature range		-40		+125	°C	
		S0T23-5L		190			
		MSOP-8L	201		_		
θ_{JA}	Package Thermal Resistance	SOIC-8L	125		°C/W		
	110010101100	TSS0P-14L	112				
		SOIC-14L		115		_	

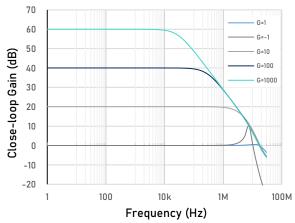


Typical Performance Characteristics


At T_A = +25 °C, V_{CM} = $V_S/2$, and R_L = 10 k Ω connected to $V_S/2$, unless otherwise noted.

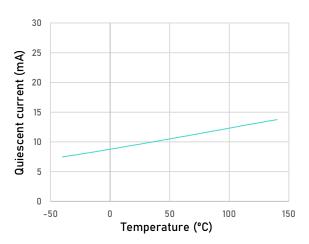

Offset Voltage Production Distribution


Input Voltage Noise Spectral Density as a function of Frequency

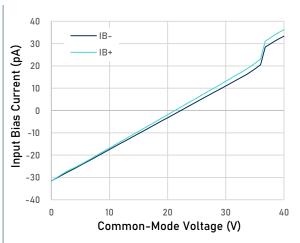

CMRR as a function of Frequency

PSRR as a function of Frequency

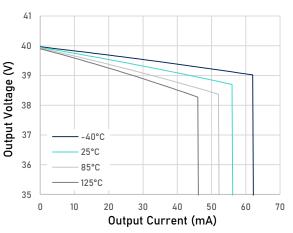
Open-loop Gain and Phase as a function of Frequency

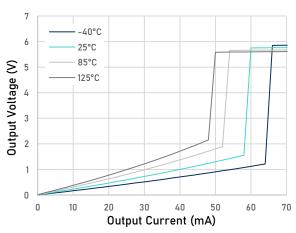


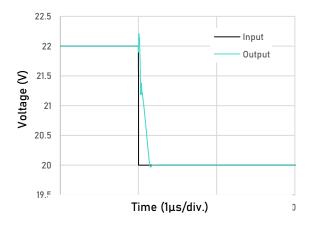
Close-loop Gain as a function of Frequency

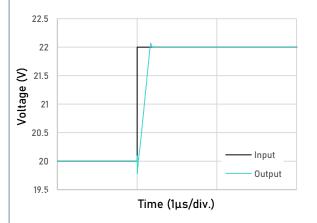


Typical Performance Characteristics (Continued)


At T_A = +25 °C, V_{CM} = $V_S/2$, and R_L = 10 k Ω connected to $V_S/2$, unless otherwise noted.

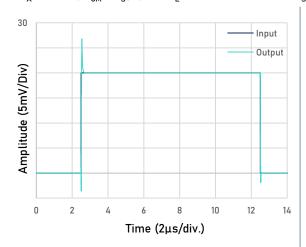

Quiescent Current as a function of Temperature


Bias Current as a function of Common-Mode Voltage

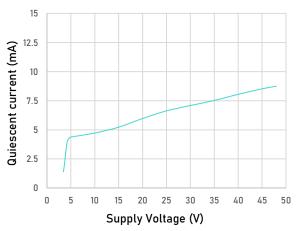

Output Voltage Swing as a function of Output Current (Sourcing, $V_S = 40 \text{ V}$)

Output Voltage Swing as a function of Output Current (Sinking, $V_S = 40 \text{ V}$)

Large-Signal Step Response(Failing)

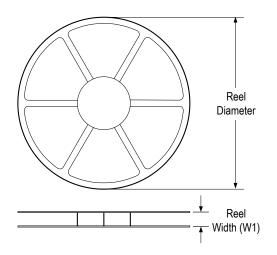


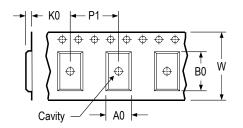
Large-Signal Step Response(Rising)



Typical Performance Characteristics (Continued)

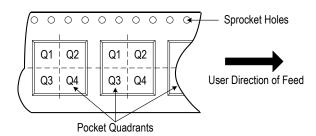
At T_A = +25 °C, V_{CM} = V_S/2, and R_L = 10 k Ω connected to V_S/2, unless otherwise noted.


Small-Signal Step Response


Quiescent Current as a function of Supply Voltage

Tape and Reel Information

REEL DIMENSIONS



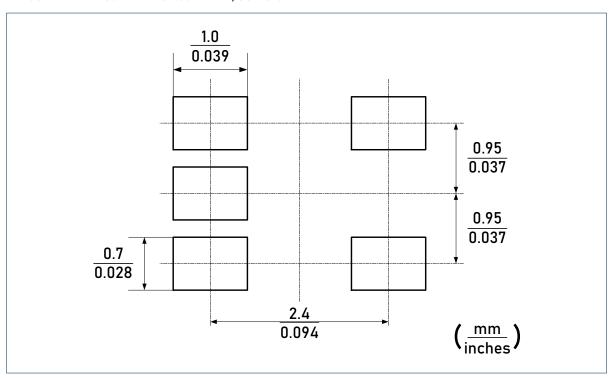
TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIETATION IN TAPE

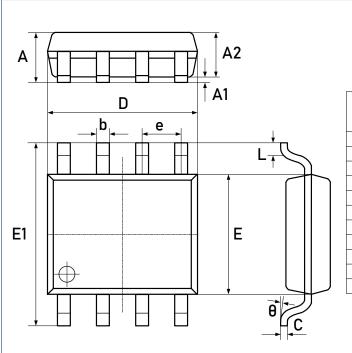
* All dimensions are nominal

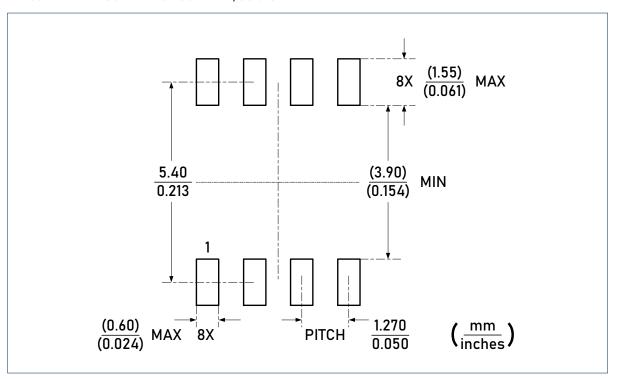
Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
LTA8091XT5/R6	S0T23	5	3 000	178	9.0	3.3	3.2	1.5	4.0	8.0	Q3


Package Outlines

DIMENSIONS, SOT23-5L

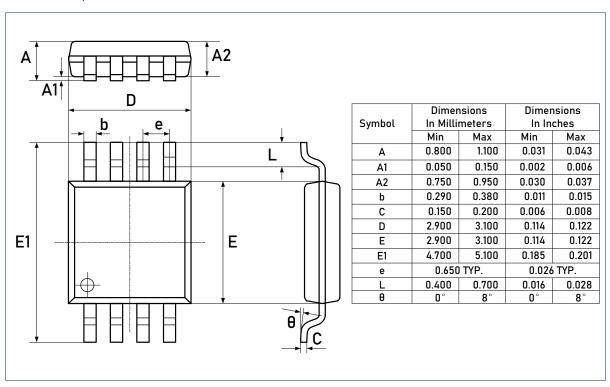
	Dimer	nsions	Dimensions		
Symbol	In Milli	meters	In Inches		
	Min	Max	Min	Max	
Α	-	1.25	-	0.049	
A1	0.04	0.10	0.002	0.004	
A2	1.00	1.20	0.039	0.047	
b	0.33	0.41	0.013	0.016	
С	0.15	0.19	0.006	0.007	
D	2.820	3.02	0.111	0.119	
E1	1.50	1.70	0.059	0.067	
Е	2.60	3.00	0.102	0.118	
е	0.95	BSC	0.037	BSC	
e1	1.90	BSC	0.075	BSC	
L	0.60	REF	0.024	REF	
L1	0.30	0.60	0.012	0.024	
θ	0°	8°	0°	8°	

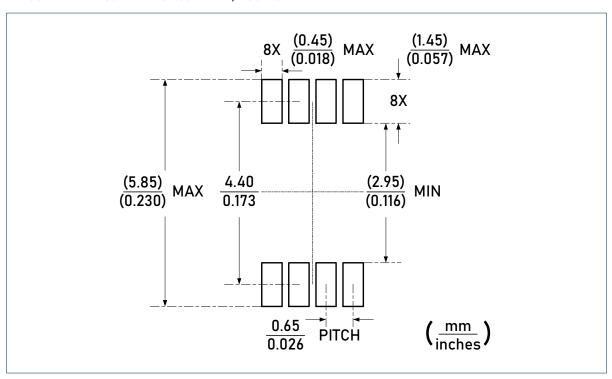

RECOMMENDED SOLDERING FOOTPRINT, SOT23-5L


Package Outlines (continued)

DIMENSIONS, SOIC-8L

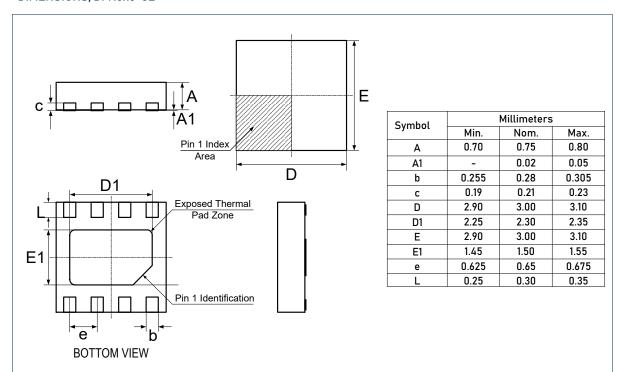
	Dimer	nsions	Dimensions		
Symbol	In Milli	meters	In Inches		
	Min	Max	Min	Max	
Α	1.370	1.670	0.054	0.066	
A1	0.070	0.170	0.003	0.007	
A2	1.300	1.500	0.051	0.059	
b	0.306	0.506	0.012	0.020	
С	0.203	TYP.	0.008 TYP.		
D	4.700	5.100	0.185	0.201	
E	3.820	4.020	0.150	0.158	
E1	5.800	6.200	0.228	0.244	
е	1.270	TYP.	0.050	TYP.	
L	0.450	0.750	0.018	0.030	
А	0°	8°	0°	8°	

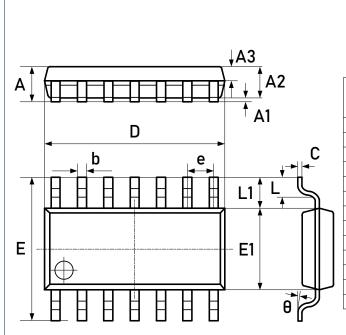

RECOMMENDED SOLDERING FOOTPRINT, SOIC-8L



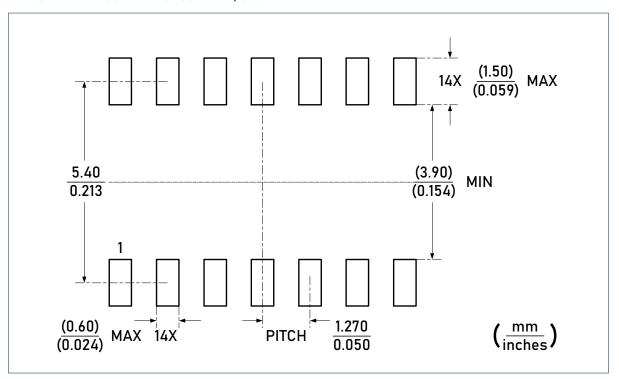
Package Outlines (continued)

DIMENSIONS, MSOP-8L


RECOMMENDED SOLDERING FOOTPRINT, MSOP-8L

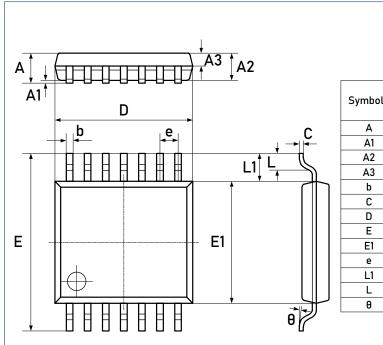

Package Outlines (continued)

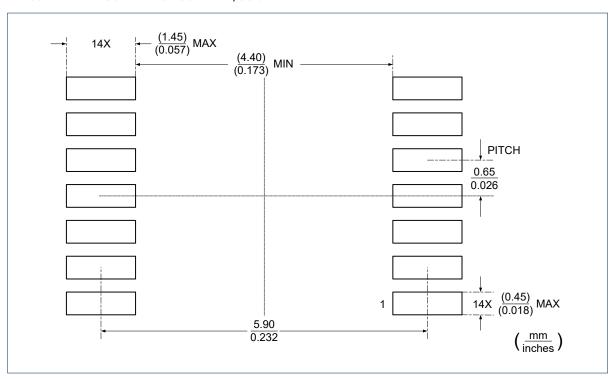
DIMENSIONS, DFN3x3-8L


Package Outlines (continued)

DIMENSIONS, SOIC-14L

	Dimer	nsions	Dimensions		
Symbol	In Milli	meters	In Inches		
	Min	Max	Min	Max	
Α	1.450	1.850	0.057	0.073	
A1	0.100	0.300	0.004	0.012	
A2	1.350	1.550	0.053	0.061	
A3	0.550	0.750	0.022	0.030	
b	0.406	TYP.	0.016 TYP.		
С	0.203	TYP.	0.008 TYP.		
D	8.630	8.830	0.340	0.348	
E	5.840	6.240	0.230	0.246	
E1	3.850	4.050	0.152	0.159	
е	1.270 TYP.		0.050 TYP.		
L1	1.040 REF.		0.041	REF.	
L	0.350	0.750	0.014	0.030	
θ	2°	8°	2°	8°	


RECOMMENDED SOLDERING FOOTPRINT, SOIC-14L


Package Outlines (continued)

DIMENSIONS, TSSOP-14L

	Dimer	nsions	Dimensions		
Symbol	In Milli	meters	In Inches		
	Min	Max	Min	Max	
Α	-	1.200	-	0.047	
A1	0.050	0.150	0.002	0.006	
A2	0.900	1.050	0.035	0.041	
A3	0.390	0.490	0.015	0.019	
b	0.200	0.290	0.008	0.011	
С	0.130	0.180	0.005	0.007	
D	4.860	5.060	0.191	0.199	
E	6.200	6.600	0.244	0.260	
E1	4.300	4.500	0.169	0.177	
е	0.650	TYP.	0.026	TYP.	
L1	1.000 REF.		0.039	REF.	
L	0.450	0.750	0.018	0.030	
θ	0°	8°	0°	8°	

RECOMMENDED SOLDERING FOOTPRINT, SOIC-14L

Important Notice

Linearin is a global fabless semiconductor company specializing in advanced high-performance high-quality analog/mixed-signal IC products and sensor solutions. The company is devoted to the innovation of high performance, analog-intensive sensor front-end products and modular sensor solutions, applied in multi-market of medical & wearable devices, smart home, sensing of IoT, intelligent industrial & smart factory (industrie 4.0), and automotives. Linearin's product families include widely-used standard catalog products, solution-based application specific standard products (ASSPs) and sensor modules that help customers achieve faster time-to-market products. Go to http://www.linearin.com for a complete list of Linearin product families.

For additional product information, or full datasheet, please contact with the Linearin's Sales Department or Representatives.

